MAUI SMART GRID PROJECT

Hawaii Natural Energy Institute

University of Hawaii at Manoa

GE

Energy

Maui Electric Company, Ltd.

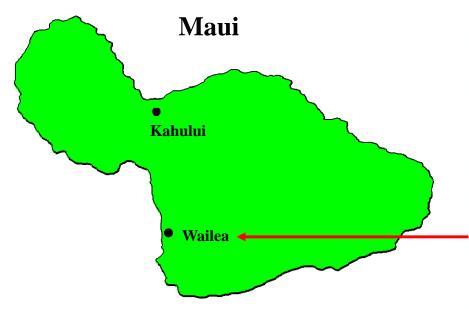
GE Global Research United States - India - China - Gerr

Hawaii Natural Energy Institute

Maui Smart Grid Project Overview

- Maui Smart Grid Project is a demonstration project funded through U.S. Department of Energy (DOE), Renewable and Distributed Systems Integration (RDSI) program
 - RDSI is a R&D program focusing on grid integration of distributed energy resources
- In 2007, the RDSI program issued an RFP for demonstration projects
 - HNEI-led team won one out of 9 awards 80 applicants
 - Project total budget of \$15 million from 2009-2013
 - \$7 million DOE funds, \$8 million cost share with partners

Hawaii Natural Energy Institute


Maui Smart Grid Project Objectives Distributed Resources for Transmission-level Support

- Reduce distribution circuit peak loading by >15%
 - By demand response, switching peak loads to energy storage, and reducing voltage
- Improve service quality
 - By using Integrated volt/var control, outage management
- Enable consumers to manage their energy use to minimize electric bills
 - By using customer portals and advanced home energy gateways for a few homes
- Support grid stability
 - Controllable loads, storage, and improved voltage/current information will improve grid stability
- Enable greater utilization of as-available renewable energy sources
 - By providing measurement and estimation of distributed PV to the utility operator

Hawaii Natural Energy Institute

Project Located in Wailea, Maui

Basic System Facts:

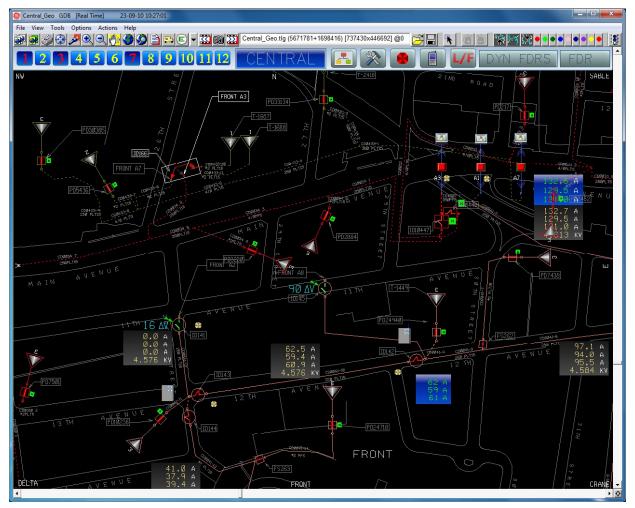
MECO system peak load ≈ 200MW

Firm generating capacity \approx 240 MW

Kaheawa Wind plant = 30 MW

Approx. 90 MW of potential renewables within project period

Hawaii Natural Energy Institute

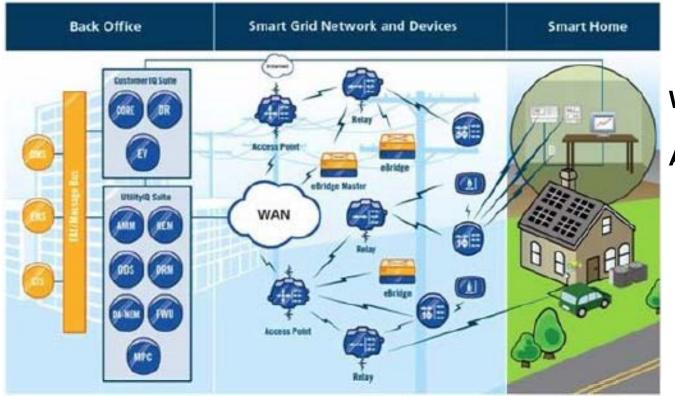

School of Ocean and Earth Science and Technology University of Hawaii at Manoa

Project will use 2 circuits @ Wailea Sub. Maui Meadows: 500+ homes Other circuit with resorts and commercial

GENe Distribution Management System (DMS)

Centralized data management and control of distribution system assets

Visualize distribution system data Dynamic load flow model Volt/VAR optimization Developing decision support "dashboard"


General Electric is technology provider for this system

Hawaii Natural Energy Institute

Advanced Metering Infrastructure (AMI)

Providing two-way communications to distribution system assets

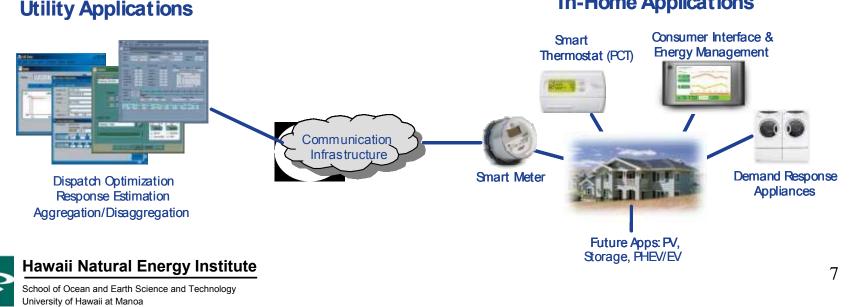
Wireless mesh network

AMI supports:

- voltage monitoring
- demand response
- PV monitoring

Silver Spring Networks is technology provider for this system

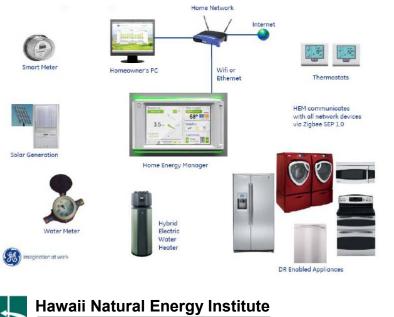
Hawaii Natural Energy Institute


Demand Response Management System (DRMS) Manage load during system events and peak load

1. Load reduction during peak periods

Contribute to 15% peak load reduction on circuit 1517

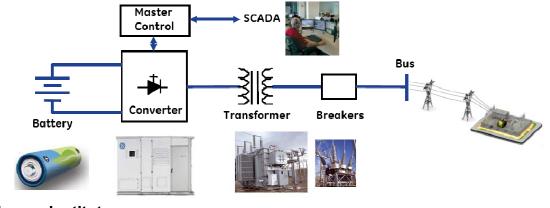
Increase energy consumption during off-peak hours 2.


Increase energy production from renewable generation by shifting • energy use from peak to off-peak hours

In-Home Applications

Home Energy Management System (HEMS) Residential consumer portal

- Monitor electricity usage & solar PV production
- Programmable thermostat, load control switches, and "Gateway"
- Demand response enabled comms for smart appliances
- Communications: Supports Ethernet, WiFi, Zigbee SEP 1.0
- Interface: In-home display or web interface



Battery Energy Storage System (BESS) Multiple Benefits

- 1. BESS located at Wailea Substation
- 2. Manage peak load \rightarrow Discharge for 1-2hr during peak
- 3. Voltage regulation → Manage variability caused by load and PV
- 4. Renewables Integration
 - Non-spinning reserve → Rapidly inject power, and bridge to fast-start generation.
 - Reduce wind curtailment → Charge off peak during excess energy periods

Hawaii Natural Energy Institute

Project Timeline

	Budget Period 1		Budget Period 2		Budget Period 3			
	2009	2	010	2011		2012		2013
	Q1, Q2 Q3, Q4	Q1, Q2	Q3, Q4	Q1, Q2	Q3, Q4	Q1, Q2	Q3, Q4	Q1
DMS								
AMI, DRMS, HEMS, and Sensors	Develop Functional Spec	Detailed design, Technology selection		Development, Testing, Outreach	Deploy on System Ope Maui and Dat Collectio		а	
BESS		RFP, Select vendor		Design and Build				

Mahalo! Questions?

Hawaii Natural Energy Institute

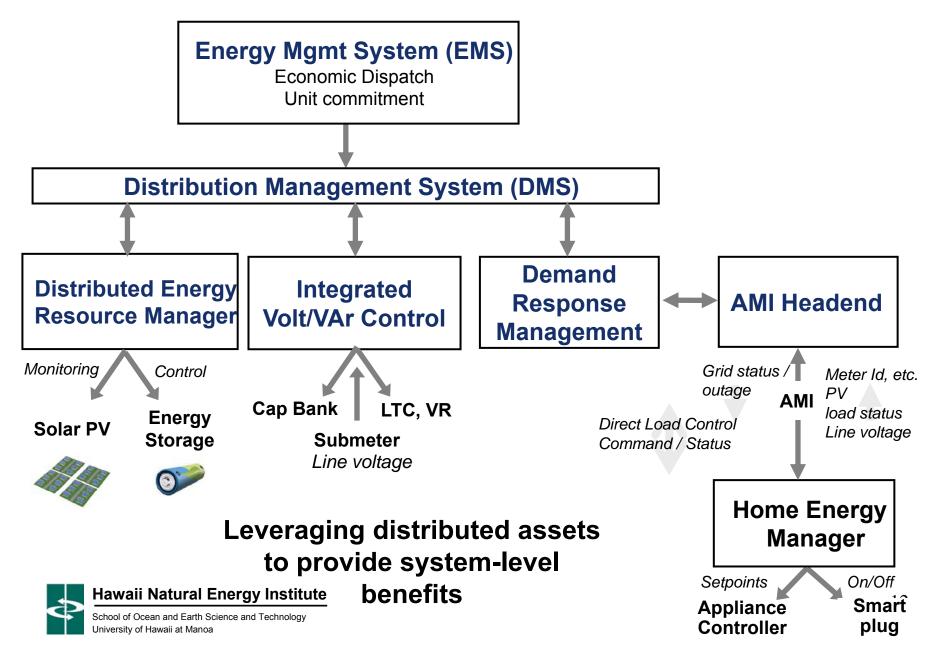
University of Hawaii at Manoa

GE Global Research

United States - India - China - Gerr

GE

Energy


Maui Electric Company, Ltd.

Hawaii Natural Energy Institute

Demonstrating New DMS Functions

Maui Smart Grid Project Objectives

Distributed Resources for Transmission-level Support

	DMS	AMI, DRMS, HEMS, and Monitoring	BESS	
Reduce peak load	 Aggregate DER and provide dashboard control Volt/VAR control 	 Enable direct load control TOU prices (in future) 	 Discharge energy to reduce load 	
Improve service quality	 Provide visibility to operator Improved outage mgmt Volt/VAR optimization 	Voltage monitoring validates DMS load flow	 Can help manage voltage 	
Inform consumer decisions		 Communicate prices Real-time display Energy mgmt system 		
Grid stability	 Visibility on PV output Aggregate DER and provide dashboard control 	 Real-time monitoring of PV Enable load control 	 Discharge energy during system events 	
Increase RE utilization	 Provide reserve support (potentially reduce reserves) 	Load shifting	 Charge during off- peak 	

Hawaii Natural Energy Institute